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ABSTRACT

This paper describes the algorithm for MIREX 2019 cover
song identification task. We utilize Convolutional Neural
Networks (CNNs) to learn a descriptor toward cover song
identification. Viewing different songs as different classes
and versions as samples, we train the network through clas-
sification criteria. After the training, the network is used to
extract music representation for cover song identification.

1. INTRODUCTION

Cover song identification has long been an interesting topic
for researchers in Music Information Retrieval as its poten-
tial applications in music license management, music re-
trieval, etc. Over the past ten years, the researchers initially
attempt to employ dynamic programming toward this task,
such as chroma [7,8]. And some attempted to model music
for cover song identification, such as 2DFM [1]. Further-
more, a few researchers used Deep Learning for this task
recently [3,9]. Based on TPPNet [10], we designed a more
powerful network structure to extract compact representa-
tions from music.

2. METHOD

As shown in Figure 1, we have a training dataset D =
{(xn, tn)}, where xn is a recording and tn is a one-hot vec-
tor denoting to which song (or class) the recording belongs.
Different versions of the same song are viewed as the sam-
ples from the same class, and different songs are regarded
as the different classes. We aim to train a classification
network model fθ parameterized by θ from D. Then, this
model could be used for cover song retrieval. More specif-
ically, after the training, given a query q and references rn
in the dataset, we extract latent features fθ(Q), fθ(Rn) us-
ing the network, which we call music representations, and
use a metric s to measure their similarity.

2.1 Feature

CQT, mapping frequency energy into musical notes [2], is
extracted by Librosa [4] for our experiment. The audio
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Figure 1. Training procedure and retrieval procedure.
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Figure 2. Network structure. KS: kernel size, C: channel
number, D: dilation and S: stride. The stride is set to 1× 1
for the convolutional layers, and pooling layers has a dila-
tion of 1 × 1. The output dimension is 4611, the number
of classes in the training set.



is resampled to 22050 Hz, the number of bins per octave
is set as 12 and Hann window is used for extraction with a
hop size of 512. Finally, a 20-point mean filter is applied to
CQT, and the resulting feature is a sequence with a feature
rate of about 2 Hz. It could also be viewed as a 84 × T
matrix where T depends on the duration of input audio.

2.2 Network Structure

We stack small filters following with max pooling opera-
tions, except that in initial layers, we design the height of
filter to be 12 or 13 (see Figure 2). This setting results in
that the units of the third layer have a receptive field with
a height of 36; it spans across three octaves or thirty-six
semitones. Besides, we also introduce dilated convolution
into the model. This structure helps enlarge the receptive
field and works well in speech synthesis and speech de-
noising [5, 6]. More importantly, our model does not in-
volve any downsample pooling operation in the frequency
dimension; in other words, the vertical stride is always set
to 1. Furthermore, after several convolutional and pooling
layers, we apply an adaptive pooling layer to the feature
map, whose length varies depending on the input audio.

2.3 Training Scheme

We design a multi-length training strategy to resolve this
problem. For each batch, we sample some recordings from
the training set and extract CQTs from them. For each
CQT, we randomly crop three subsequences with a length
of 200, 300 and 400 for training, corresponding to roughly
100s, 150s and 200s respectively.

We make some data augmentation when training the
model. We sample a changing factor from (0.7, 1.3) for
each recording in the batch following uniform distribu-
tion and simulate tempo changes using Librosa [4] on the
recording before cropping subsequences.

Second Hand Songs 100K (SHS100K), which is col-
lected from Second Hand Songs website and Youtube [9],
contains 8858 songs with various covers and 108523 record-
ings in total. In our experiments, we split this dataset into
three subsets – SHS100K-TRAIN, SHS100K-VAL and SHS100K-
TEST with a ratio of 8 : 1 : 1 for training, validation and
testing respectively.

2.4 Retrieval

the network is used to extract music representation. As
shown in Figure 1, given a query q and a reference r, we
first extract their CQT descriptors Q and R respectively,
which are fed into the network to obtain music representa-
tions fθ(Q) and fθ(R)), and then the similarity s is defined
as their cosine similarity:

s(fθ(Q), fθ(R)) =
fθ(Q)T fθ(R)

|fθ(Q)||fθ(R)|
(1)

After compute pair-wise similarity between query and ref-
erences in dataset, a ranking list is returned for evaluation.
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