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ABSTRACT

This extended abstract describes the system we submitted
to the MIREX 2020 Lyrics Transcription task. The system
consists of two modules: a source separation front-end and
an ASR back-end. The first module separates the vocal
from a polyphonic song by utilising a convolutional time-
domain audio separation network (ConvTasNet). The sec-
ond module transcribes the lyrics from the separated vo-
cal by using a factored-layer time-delay neural network
(fTDNN) acoustic model and a 4-gram language model.
Both the separation and the ASR modules are trained on a
large open-source singing corpora, namely, Smule DAMP-
VSEP and Smule DAMP-MVP. Using a separation mod-
ule audio pre-processing reduced the transcription error by
roughly 11% absolute WER for polyphonic songs com-
pared with transcriptions without vocal separation. How-
ever, the best WER achieved was 52.06%, very high com-
pared to WERs as low as 19.60% that we achieved previ-
ously for unaccompanied song [16].

1. INTRODUCTION

The task of automatic speech recognition (ASR) task is that
of identifying and transcribing words directly from an au-
dio signal, whether the signal is a single speaker, multiple
speakers or speech in a noisy environment. We use the
term lyric transcription (LT) when the audio signal corre-
sponds to sung speech, where, in general, the voice may be
unaccompanied (i.e., acapella) or in the presence of back-
ground musical accompaniment.

Existing acapella singing LT systems are typically based
on successful approaches for spoken speech. In particular,
these systems utilise the same acoustic features motivated
by the similarities between sung and spoken speech, i.e.,
they share the same production systems and convey seman-
tic information in the same way [6, 9, 16, 18].

However, several differences between the sung and spo-
ken speech styles make LT a more difficult task. First, sung
speech possesses a larger pitch range and higher pitch av-
erage than spoken speech [8]. Second, in spoken speech,
the pitch can vary freely up to 12 semitones within a syl-
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lable [12] but, in sung speech, these variations are more
discrete with changes no greater than two semitones [19].
Third, the duration of the sung speech syllables is larger
than in spoken speech, which can lead to phone insertion
and substitution errors [5]. Finally, singers can employ
vibrato singing, a frequency modulation of periodic pitch
variations of between 5.5 and 7.5 Hz [17]. These differ-
ences are the result of the fact that, in song, artistic in-
terpretation tends to have greater importance than speech
intelligibility.

The transcription task becomes even more complicated
when the singing is in the presence of background instru-
mental accompaniment (polyphonic music). This presents
a source separation problem which is made particularly
challenging by the fact that singing is often highly corre-
lated with the background, resulting in a frequency overlap
and synchronised frequency and amplitude modulations.

There are basically two main ways to tackle this prob-
lem. First, train models to transcribed the lyrics directly
from the polyphonic music audio. This approach has been
employed in lyrics to audio alignment task. In these kinds
of problems, unlike LT, the lyrics are known, and the ob-
jective is to align the phonetic units with the knowing lyrics
[4]. The second approach relies on an audio source separa-
tion front-end to enhance the vocal source before passing it
to a transcription back-end [9], trained on either enhanced
or isolated sung speech.

Following the second approach, in this work, we present
an extension of the solo-singing sung speech ASR sys-
tem presented in [16]. We incorporate a source separation
front-end consisting of a convolutional time-domain audio
separation network (ConvTasNet) trained on the DAMP-
VSEP corpus [2].

2. DATASETS

For training and evaluation, we use two open-source DAMP
singing corpora sourced from the Smule 1 karaoke appli-
cation, and the polyphonic musical corpus DALI [10].

First, we utilised the Smule Digital Archive of Mobile
Performances - Vocal Separation (DAMP-VSEP) dataset
[2] to train the audio source separation module. For each
song, this dataset provides the vocal segments, the cor-
responding backtracking and a mixture of the two. It is
composed of 41000 segments, each of 30-seconds, from
recordings made in 155 countries and 36 different languages,

1 www.smule.com



Figure 1. Lyrics transcription pipeline system.

Table 1. Description of the training datasets.

Module Dataset Songs Size

Source Separation DAMP-VSEP 9243 77 hrs.
Acoustic Model DSing30 4234 149 hrs.

by 6456 singers with 11,494 song arrangements. We con-
structed a subset of the corpus by filtering all songs clas-
sified as English and rearranging the duets ensembles into
two single performances. In the corpus, more than one
performance of the same song may be available. For each
performance, a copy of the background is provided. How-
ever, no information is provided that indicates that these
copies are in fact, the same background. Therefore, to
avoid overlap in the training and development test sets,
we detected and grouped identical backgrounds by using
their MD5 checksum. This resulted in about 2100 dis-
tinct backgrounds. Then, we cross-correlated the distinct
backgrounds to group all perceptually similar ones. This
last step was necessary because several non-identical back-
grounds are slightly different versions of the same record-
ing, e.g., they are time-shifted versions or has different
volume level. Then, given the correlation matrix, we re-
cursively group the backgrounds with a correlation greater
than certain threshold. We tested several thresholds val-
ues and selected a value equal to 0.9831, which was a
value where, after human evaluation, the clustering error
was minimised. This process resulted in 1364 clusters of
perceptually distinct backgrounds. Finally, the develop-
ment and evaluation sets were constructed by selecting,
and equally distributing, 200 backgrounds from the clus-
ters with a single element. To add an extra precaution
of avoiding overlapping with the train set, we chose the
200 backgrounds were its higher correlation with any other
background is lower than 0.9440, which is the minimum
threshold to complete the 200 backgrounds needed. This
process resulted in 9243 performances for training, 100 for
validation and 100 for evaluation. Further, the evaluation
set was humanly aligned and transcribed at the utterance
level, enabling it to be used as a system evaluation set.

For the ASR module, we utilised the DSing30 [16] for
training a solo-singing AM model. DSing30 is the largest
training set offered by the DSing dataset [16]. DSing cor-
responds a pre-processed dataset composed by 4,460 En-

Table 2. Description of the system evaluation sets.

Dataset Utt Size

DAMP-VSEP 416 0.5 hrs.
DALI 515 0.4 hrs.

glish karaoke performances from the larger multi-language
karaoke performances Smule Multilingual Vocal Perfor-
mance 300x30x2 (DAMP-MVP) dataset [1]. For details
of the construction of DSing, please refer to [16].

Finally, we selected ten songs from the ground truth of
DALI dataset [10] to be used for system evaluation. DALI
is a collection of polyphonic songs sourced from YouTube
with synchronised audio, lyrics and notes. Due to DALI
relies on the availability of the videos on YouTube. At
the time of writing, 91 out of the 105 ground truth songs
remain online.

Table 1 presents a summarise of the source separation
and AM model training datasets.

3. SYSTEM FRAMEWORK

The LT system presented is composed of two independent
modules connected in a pipeline; the audio source separa-
tion and ASR module. Figure 1 shows a diagram of the
transcription system.

For the audio source separation module, we train a Con-
vTasNet [7] model by using the Asteroid PyTorch-based
audio source separation toolkit [11]. The model was trained
on the DAMP-VSEP dataset for 100 epoch using four GPUs,
learning rate of 0.0003 and the Adam optimization algo-
rithm.

For the ASR module, we extended the sung speech recog-
nition system described in [16], built using the Kaldi ASR
toolkit [14], by expanding the MFCC feature vector with
vocal source features (VSF). The VSF features are con-
formed by four pitch features, two jitter parameters, one
shimmer parameter and harmonic to noise ratio. Using
these expanded features, we trained a factorised time-delay
neural network (TDNN-F) [13] AM with a lattice-free max-
imum mutual information (LF-MMI) loss function [15].
We employed a two frames context vector consistent of 40
MFCC and 8 VSF, plus 100 i-Vectors [3]. The model was
trained on the solo-singing DSing30 corpus.



Table 3. Transcription performances decoding with the
4-gram LM. Ref vocal refers to the isolated vocal seg-
ment, Sep vocal refers to the separated vocal resulting from
the separation module and Mixture refer to the polyphonic
song.

Eval set Audio conditions WER

DAMP-VSEP
Ref vocal 24.07
Mixture 63.98

Sep vocal 52.06

DALI
Mixture 87.81

Sep vocal 75.91

The language model (LM) employed is a 3-gram Max-
Ent LM trained on an in-domain lyrics corpus sourced from
Lyrics Wiki website 2 , and a 4-gram model for final rescor-
ing trained on the same corpus.

4. EXPERIMENTS RESULTS

For the evaluation of the system, we employ two differ-
ent datasets: DAMP-VSEP and DALI. Table 2 summarises
the size of these evaluation sets. First, we measure the
performance for the isolated vocal (Ref vocal) and the the
DAMP-VSEP mixture (Mixture) without applying the source
separation pre-processing. We obtained WERs of 24.07%
and 63.98% for the isolated vocal and the mixture, respec-
tively. These results serve as an upper- and lower- per-
formance band. Then, we activated the source separation
module to separate the vocal (Sep vocal) from the DAMP-
VSEP mixture, obtaining a WER of 52.06%, i.e. at 12%
absolute decreased compared to the unprocessed mixed au-
dio. Then, we repeated the experiments this time using the
DALI mixture audio. Transcribing the lyrics directly from
the DALI mixture audio led to a WER of 87.81% and intro-
ducing the source separation reduced the WER to 75.91%.

In both evaluations, the utilisation of the source sepa-
ration front-end decreased the transcription error of poly-
phonic music in about 11%. However, the WER on the
DALI data is significantly higher than that obtain with DAMP-
VSEP. The acoustic difference between DALI and DAMP-
VSEP may explain these disparate results. Most of the
backgrounds of the latter are simpler mixtures, i.e., they
are acoustic arrangements composed of a single instrument
like piano or acoustic guitar. Also, in DAMP-VSEP, there
are fewer types of instruments across the dataset, making
it less variable than DALI.

Table 3 presents a summarise of the system performance
in WER. The performances of the system using the source
separation module before the ASR are presented in bold.

5. CONCLUSIONS

We presented a two-component lyric transcription system
composed of a source separation front-end and an ASR
back-end. The front-end module is a ConvTasNet source

2 https://lyrics.fandom.com/wiki/LyricWiki

separation system trained on DAMP-VSEP dataset using
Asteroid toolkit. The second module is an extension of
the ASR system presented in [16], where we expanded
the MFCC features with voice source features. The source
separation component produced a 11% absolute WER im-
provement when evaluated on either DAMP-VSEP (Karaoke
performances) or DALI (music from YouTube). However,
there is plenty of space for improvement as shown by the
DAMP-VSEP results, where the WER for the pre-mixed
vocal track is 24.07%, but for the separated vocal it in-
creases to 52.06%. These results suggests that large perfor-
mance gains could be made through improvements to the
separation front-end, or by retraining the acoustic model to
reduce mismatch caused by residual noise in the separated
signal. We are following both these directions in ongoing
work.
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Dumouchel, and Pierre Ouellet. Front-end factor anal-
ysis for speaker verification. IEEE Transactions on
Audio, Speech, and Language Processing, 19(4):788–
798, 2011.

[4] Chitralekha Gupta, Emre Yılmaz, and Haizhou Li.
Acoustic Modeling for Automatic Lyrics-to-Audio
Alignment. In Proc. Interspeech, 2019.

[5] Dairoku Kawai, Kazumasa Yamamoto, and Seiichi
Nakagawa. Lyric recognition in monophonic singing
using pitch-dependent DNN. In Proc. IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2017.

[6] Anna M Kruspe. Bootstrapping a system for phoneme
recognition and keyword spotting in unaccompanied
singing. In Proc. International Society for Music In-
formation Retrieval Conference (ISMIR), 2016.

[7] Yi Luo and Nima Mesgarani. Conv-TasNet: Surpass-
ing Ideal Time–Frequency Magnitude Masking for
Speech Separation. IEEE/ACM Transactions on Au-
dio, Speech, and Language Processing, 27:1256–1266,
Aug 2019.

[8] Julia Merrill and Pauline Larrouy-Maestri. Vocal fea-
tures of song and speech: Insights from Schoenberg’s
Pierrot lunaire. Frontiers in Psychology, 8(JUL), 2017.

[9] Annamaria Mesaros and Tuomas Virtanen. Recogni-
tion of phonemes and words in singing. In Proc. IEEE



International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2010.

[10] Gabriel Meseguer-Brocal, Alice Cohen-Hadria, and
Geoffroy Peeters. DALI: a large Dataset of synchro-
nized Audio, LyrIcs and notes, automatically created
using teacher-student machine learning paradigm. In
Proc. International Society for Music Information Re-
trieval Conference (ISMIR), 2018.

[11] Manuel Pariente, Samuele Cornell, Joris Cosentino,
Sunit Sivasankaran, Efthymios Tzinis, Jens Heitkaem-
per, Michel Olvera, Fabian-Robert Stöter, Mathieu Hu,
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