Difference between revisions of "2005:Symbolic Genre Classification Results"

From MIREX Wiki
(Created page with '{| border="1" |- style="background: yellow; text-align: center;" ! colspan="4" | OVERALL |-style="background: yellow;" !Rank !Participant !Mean Hierarchical Classification Accu…')
 
Line 1: Line 1:
 +
==Introduction==
 +
''' Goal:''' To classify MIDI recordings into genre categories.
 +
 +
'''Dataset:''' Two sets of genre categories were used, one consisting of 38 categories and one consisting of  9 categories. Each category was represented by 25 MIDI files.Thus, the 38 genre test contained 950 MIDI files and the 9 genre test contained 225 MIDI files.Test runs were 3-fold crossvalidated with each algorithm tested using identical training and testing data splits.
 +
 
{| border="1"
 
{| border="1"
 
|- style="background: yellow; text-align: center;"
 
|- style="background: yellow; text-align: center;"
Line 48: Line 53:
 
!Machine
 
!Machine
 
!Confusion Matrix Files
 
!Confusion Matrix Files
|
 
|
 
 
|----
 
|----
 
|1
 
|1
Line 60: Line 63:
 
|R
 
|R
 
|MF_38eval.txt
 
|MF_38eval.txt
|
 
|
 
 
|----
 
|----
 
|2
 
|2
Line 72: Line 73:
 
|N/A
 
|N/A
 
|BST_NB_38eval.txt
 
|BST_NB_38eval.txt
|
 
|
 
 
|----
 
|----
 
|3
 
|3
Line 84: Line 83:
 
|N/A
 
|N/A
 
|BST_J48_38eval.txt
 
|BST_J48_38eval.txt
|
 
|
 
 
|----
 
|----
 
|4
 
|4
Line 96: Line 93:
 
|G
 
|G
 
|L_38eval.txt
 
|L_38eval.txt
|
 
|
 
 
|----
 
|----
 
|5
 
|5
Line 108: Line 103:
 
|L
 
|L
 
|PI_38eval.txt
 
|PI_38eval.txt
|
 
|
 
 
|----
 
|----
|9 Classes
+
|}
|
+
<br>
|
+
{| border="1"
|
+
|- style="background: yellow; text-align: center;"
|
+
! colspan="9" | 9 Classes
|
+
|-style="background: yellow;"
|
+
!Rank
|
+
!Participant
|
+
!Hierarchical Classification Accuracy
|
+
!Hierarchical Classification Accuracy Std
|
+
!Raw Classification Accuracy
|----
+
!Raw Classification Accuracy Std
|Rank
+
!Runtime (s)
|Participant
+
!Machine
|Hierarchical Classification Accuracy
+
!Confusion Matrix Files
|Hierarchical Classification Accuracy Std
 
|Raw Classification Accuracy
 
|Raw Classification Accuracy Std
 
|Runtime (s)
 
|Machine
 
|Confusion Matrix Files
 
|
 
|
 
 
|----
 
|----
 
|1
 
|1
Line 144: Line 129:
 
|R
 
|R
 
|MF_9eval.txt
 
|MF_9eval.txt
|
 
|
 
 
|----
 
|----
 
|2
 
|2
Line 156: Line 139:
 
|N/A
 
|N/A
 
|BST_NB_9eval.txt
 
|BST_NB_9eval.txt
|
 
|
 
 
|----
 
|----
 
|3
 
|3
Line 168: Line 149:
 
|G
 
|G
 
|L_9eval.txt
 
|L_9eval.txt
|
 
|
 
 
|----
 
|----
 
|4
 
|4
Line 180: Line 159:
 
|N/A
 
|N/A
 
|BST_J48_9eval.txt
 
|BST_J48_9eval.txt
|
 
|
 
 
|----
 
|----
 
|5
 
|5
Line 192: Line 169:
 
|L
 
|L
 
|PI_9eval.txt
 
|PI_9eval.txt
|
 
|
 
 
|----
 
|----
 
|}
 
|}

Revision as of 19:37, 29 July 2010

Introduction

Goal: To classify MIDI recordings into genre categories.

Dataset: Two sets of genre categories were used, one consisting of 38 categories and one consisting of 9 categories. Each category was represented by 25 MIDI files.Thus, the 38 genre test contained 950 MIDI files and the 9 genre test contained 225 MIDI files.Test runs were 3-fold crossvalidated with each algorithm tested using identical training and testing data splits.

OVERALL
Rank Participant Mean Hierarchical Classification Accuracy Mean Raw Classification Accuracy
1 McKay & Fujinaga 77.17% 65.28%
2 Basili, Serafini, & Stellato (NB) 72.08% 58.53%
3 Li, M. 67.57% 55.90%
4 Basili, Serafini, & Stellato (J48) 67.14% 53.14%
5 Ponce de Leon & Inesta 37.76% 26.52%


38 Classes
Rank Participant Hierarchical Classification Accuracy Hierarchical Classification Accuracy Std Raw Classification Accuracy Raw Classification Accuracy Std Runtime (s) Machine Confusion Matrix Files
1 McKay & Fujinaga 64.33% 1.04 46.11% 1.51 3 days R MF_38eval.txt
2 Basili, Serafini, & Stellato (NB) 62.60% 0.26 45.05% 0.55 N/A N/A BST_NB_38eval.txt
3 Basili, Serafini, & Stellato (J48) 57.61% 1.14 40.95% 1.35 N/A N/A BST_J48_38eval.txt
4 Li, M. 54.91% 0.66 39.79% 0.87 15,948 G L_38eval.txt
5 Ponce de Leon & Inesta 24.84% 1.40 15.26% 1.13 821 L PI_38eval.txt


9 Classes
Rank Participant Hierarchical Classification Accuracy Hierarchical Classification Accuracy Std Raw Classification Accuracy Raw Classification Accuracy Std Runtime (s) Machine Confusion Matrix Files
1 McKay & Fujinaga 90.00% 0.60 84.44% 1.41 18,375 R MF_9eval.txt
2 Basili, Serafini, & Stellato (NB) 81.56% 0.76 72.00% 0.88 N/A N/A BST_NB_9eval.txt
3 Li, M. 80.22% 1.47 72.00% 2.31 3,777 G L_9eval.txt
4 Basili, Serafini, & Stellato (J48) 76.67% 1.11 65.33% 1.65 N/A N/A BST_J48_9eval.txt
5 Ponce de Leon & Inesta 50.67% 1.26 37.78% 2.30 197 L PI_9eval.txt