Difference between revisions of "2005:Symbolic Genre Classification Results"

From MIREX Wiki
(38 Classes)
(9 Classes)
Line 133: Line 133:
 
|18,375
 
|18,375
 
|R
 
|R
|[https://www.music-ir.org/mirex/abstracts/2005/sym-genre/MF_9eval.txt MF_9eval.txt]
+
|[https://www.music-ir.org/mirex/results/2005/sym-genre/MF_9eval.txt MF_9eval.txt]
 
|----
 
|----
 
|2
 
|2
Line 143: Line 143:
 
|N/A
 
|N/A
 
|N/A
 
|N/A
|[https://www.music-ir.org/mirex/abstracts/2005/sym-genre/BST_NB_9eval.txt BST_NB_9eval.txt]
+
|[https://www.music-ir.org/mirex/results/2005/sym-genre/BST_NB_9eval.txt BST_NB_9eval.txt]
 
|----
 
|----
 
|3
 
|3
Line 153: Line 153:
 
|3,777
 
|3,777
 
|G
 
|G
|[https://www.music-ir.org/mirex/abstracts/2005/sym-genre/L_9eval.txt L_9eval.txt]
+
|[https://www.music-ir.org/mirex/results/2005/sym-genre/L_9eval.txt L_9eval.txt]
 
|----
 
|----
 
|4
 
|4
Line 163: Line 163:
 
|N/A
 
|N/A
 
|N/A
 
|N/A
|[https://www.music-ir.org/mirex/abstracts/2005/sym-genre/BST_J48_9eval.txt BST_J48_9eval.txt]
+
|[https://www.music-ir.org/mirex/results/2005/sym-genre/BST_J48_9eval.txt BST_J48_9eval.txt]
 
|----
 
|----
 
|5
 
|5
Line 173: Line 173:
 
|197
 
|197
 
|L
 
|L
|[https://www.music-ir.org/mirex/abstracts/2005/sym-genre/PI_9eval.txt PI_9eval.txt]
+
|[https://www.music-ir.org/mirex/results/2005/sym-genre/PI_9eval.txt PI_9eval.txt]
 
|----
 
|----
 
|}
 
|}

Revision as of 11:36, 31 July 2010

Introduction

Goal: To classify MIDI recordings into genre categories.

Dataset: Two sets of genre categories were used, one consisting of 38 categories and one consisting of 9 categories. Each category was represented by 25 MIDI files.Thus, the 38 genre test contained 950 MIDI files and the 9 genre test contained 225 MIDI files.Test runs were 3-fold crossvalidated with each algorithm tested using identical training and testing data splits.

Results

Overall

OVERALL
Rank Participant Mean Hierarchical Classification Accuracy Mean Raw Classification Accuracy
1 McKay & Fujinaga 77.17% 65.28%
2 Basili, Serafini, & Stellato (NB) 72.08% 58.53%
3 Li, M. 67.57% 55.90%
4 Basili, Serafini, & Stellato (J48) 67.14% 53.14%
5 Ponce de Leon & Inesta 37.76% 26.52%

38 Classes

38 Classes
Rank Participant Hierarchical Classification Accuracy Hierarchical Classification Accuracy Std Raw Classification Accuracy Raw Classification Accuracy Std Runtime (s) Machine Confusion Matrix Files
1 McKay & Fujinaga 64.33% 1.04 46.11% 1.51 3 days R MF_38eval.txt
2 Basili, Serafini, & Stellato (NB) 62.60% 0.26 45.05% 0.55 N/A N/A BST_NB_38eval.txt
3 Basili, Serafini, & Stellato (J48) 57.61% 1.14 40.95% 1.35 N/A N/A BST_J48_38eval.txt
4 Li, M. 54.91% 0.66 39.79% 0.87 15,948 G L_38eval.txt
5 Ponce de Leon & Inesta 24.84% 1.40 15.26% 1.13 821 L PI_38eval.txt

9 Classes

9 Classes
Rank Participant Hierarchical Classification Accuracy Hierarchical Classification Accuracy Std Raw Classification Accuracy Raw Classification Accuracy Std Runtime (s) Machine Confusion Matrix Files
1 McKay & Fujinaga 90.00% 0.60 84.44% 1.41 18,375 R MF_9eval.txt
2 Basili, Serafini, & Stellato (NB) 81.56% 0.76 72.00% 0.88 N/A N/A BST_NB_9eval.txt
3 Li, M. 80.22% 1.47 72.00% 2.31 3,777 G L_9eval.txt
4 Basili, Serafini, & Stellato (J48) 76.67% 1.11 65.33% 1.65 N/A N/A BST_J48_9eval.txt
5 Ponce de Leon & Inesta 50.67% 1.26 37.78% 2.30 197 L PI_9eval.txt